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ABSTRACT

Autonomous vehicles will operate where humans cannot or do not want to go.

The last decade's advances in computer processor capability and speed, component

miniaturization, signal processing, and high-energy-density power supplies have made

remotely-operated vehicles (ROVs) a reality. These reliab!e, long-range, high-

endurance vehicles now perform a number of tasks in research, industrial, and

inilitary applications, but they are still incapable of truly autonomous behavior.

The U.S. Navy has identified a number of autonomous vehicle missions, and

the Naval Postgraduate School is extending ROV technology to build an autonomous

underwater vehicle (AUV). The mission controller for the NPS AUV is a

knowledge-based artificial intelligence (AI) system requiring thorough analysis and

testing before the AUV is operational. Rapid prototyping of this software has been

demonstrated by developing controller code on a LISP machine and using an

Ethernet link with a graphics workstation to simulate the controller's environment.

This thesis updates and hinproves the earlier simulator and its hardware, and

describes the development of a new testing simulator designed to examine AUV

controller subsystems and vehicle models before integrating them with the full AUV

for its test environment missions. This AUV simulator is fully autonomous once

initial mission parameters are selected.
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I. INTRODUCTION

A. BACKGROUND AND BRIEF PROBLEM STATEMENT

Autonomous vehicles can go where humans cannot or do not want to go.

These robots are capable of receiving initial input, moving to another location and

executing a mission, and returning with the requested results or data. In addition to

performing labor-intensive or repetitive tasks, these vehicles can perform their jobs

faster and with greater precision than humans, and can also proceed into hostile or

contaminated environments.

For the last thirty years, remotely-operated vehicles (ROVs) have attempted to

fill these needs. The last decade's tremendous advances in computer and systems

engineering have produced powerful, reliable, and inexpensive ROVs capable of a

wide variety of tasks. These vehicles are commonplace in the oil-drilling. salvage.

and ocean engineering industries, and they are extending the reach of

oceanographers with lengthy missions that produce high-resolution data from great

depths. The armed forces of several countries use ROVs for battlefield

reconnaissance and long-range targeting, and military ROV research continues.

(Bane and Ferguson, 1987.)

Although they have become extremely useful to the military, ROVs still

require operator supervision and are incapable of independent operations. This

handicap greatly reduces their ability to execute complicated, coven missions in

hostile territory where an unknown and dangerous environment requires impromptu



planning to handle unforseen situations. Since ROV systems have proven their

military usefulness, future designs must make these combat vehicles truly

autonomous.

The U.S. Navy has identified a number of tasks that can be performed by

Autonomous Underwater Vehicles (AUVs). and the Defense Advanced Research

Projects Agency (DARPA) strongly supports AUV research (Robinson, 1986;

Eisenstadt, 1987). Researchers are applying ROV technology to design powerful

AUV systems with high endurance, small profiles, and extended range. However,

the greatest challenges lie in producing artificial intelligence (A) systems to support

mission execution, vehicle perception an' navigation, and contingency planning.

The Naval Postgraduate School is developing an experimental AUV to address

these military requirements. Part of this project is the design of simulators that will

reduce the time and expense of implementing various AUJV subsystems while also

permitting efforts to proceed along several simultaneous approaches. Previous

simulator research (MacPherson, 1988) has shown that graphics workstatioits provide

a useful way to simulate a realistic environment for conducting AUV operations.

This approach permits the prompt development and thorough testing of Al software

and will be used to test code for the NPS AUV while also developing the next

generation of software.

This thesis improves on the original research by expanding and upgrading its

systems. In addition, a new simulator has been developed to generate a "laboratory

environment" for testing several AUV planning, navigation, and control subsy'tenis.

This new simulator will also be used to examine different AUV hydrodynainic
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models and to test maneuvering systems in conjunction with different sensor

configurations. These proven subsystems will be integrated with the AUV mission

planner to develop ful scale proposed missions before operational testing of the

actual vehicle.

B. THESIS ORGANIZATION

Chapter II reviews previous work on ROV and AUV systems and examines

system architecture and programming language issues. Tne use of modem computer

workstations for vehicle simulations is discussed and an example is included.

Chapter III presents a detailed problem statement for this thesis and describes

the mathematical model for the dynamics of both vehicles. The autopilot and

logical control levels are discussed and the features of the two vehicle models and

their environments are compared. The simulation facilit;es are also described and

contrasted.

A detailed description of the simulator's design and operatioa is presented in

Chapter IV. This includes ar examination of the autopilot, the dynamics of both

vehicles, the operation of the inter-computer communications code, and a user's

manual. The overall software system design is described to show how actual

vehicle changes or improvements can be added to the simulator to keep it a,,

realistic as possible.

The simulator's operation is examined in Chapter V. This chapter explains

the various missions that can be run on the simulator and their results. These

results are summarized in Chapter VI and are used as a basis for proposed



extensions and improvements. This chapter also explains the contributions this

,esearch has made to the development of autonomous vehicles.



II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Remotely-operated vehicles (ROVs) have been in operation since the early

1950s and autonornous vchicle research began in the early 1960s. Although the

early ROVs were limited in range, notoriously difficult to control, and mechanically

unreliable, autonomous vehicles were even more severely restricted by available

technology. Through the early 1970s, manned vehicles were required for most tasks

while maturing ROV technology developed useful ranges, better ,ontrols, and

reliability. However, although ROV use began to grow, technological handicaps

caused autonomous vehicle research to die out by the end of the 1960s. (Brady et

al., 1984.)

The 1980s have produced dramatic improvements in processor capability and

speed. component miniaturization, signal processing, sensor resolution, and high-

energy-density power supplies. These rapid advances have been integrated with

ROV operations and have rekindled autonomous vehicle research for a variety of

military and industrial uses. ROV applications are widespread in the military and

have tome commonplace in many industries. In 1986, the Defense Advanced

Research Projects Agency (DARPA) AUV Study Committee identified over seventy

military AUV missions (Bane and Ferguson, 1987) while additional groups described

many other military and industrial uses for AUVs (Robinson, 1986). U.S. Navy

ship designers are also accommodating AUV technology-- the Sea Wolf (SSN-21)

5



class of attack submarines will have larger-diameter torpedo tubes capable of

deploying AUVs for anti-submarine warfare or other uses (Baker, i989).

This chapter surveys current ROV uses and then shows how this technology

and operational experience has been applied to AUV research. Different AUV

programs are described and their research issues are discussed. The last section of

this chapter discusses the use of computer simulations for the research and testing

of vehicle dynamics and controls.

B. REMOTELY-OPERATED VEHICLE (ROV) TECHNOLOGY

MacPherson (98) describes several military ROV programs under

development or in operation. The U.S. Navy's Remotely-piloted Vehicle (RPV) for

airbome ocean surveillance and the Israeli Armed Forces battlefield RPVs have seen

several years of operating experience; in some cases their utility has been

demonstrated in actual combat (Steele, 1988).

In contrast to the military's recent ROV experience, industrial ROVs have

undergone explosive growth in the last five years. Researchers from industry and

academia have formed many groups, and several annual symposia display a broad

range of ROVs for a variety of applications and budgets (ROV '89, 1989). These

products are frequently used in the offshore oil-drilling and underwater construction

fields where the danger or expense of using human workers is prohibitive. Another

well-publicized operation was the use of the Alvin and its Jason Jr. ROV to locate

and explore the Titanic (WHOI, 1986; Yoerger et al., 1986). In addition to the

salvage industry, ROVs have gained widespread acceptance in oceanographic

6



re-,a'ch. The remainder of this section will discuss several of these programs and

their ROVs.

1. Sea Ferret

The Underwater Resources, Inc. Sea Ferret (or "miniROVer") is a small,

low-cost ROV used in tunnels and penstocks to perform corrosion surveys and

welding inspections. This vehicle operates in the tunnels of hydroelectric plants or

water-treatment facilities to observe valve or gateway operations, perform damage

assessments, make repairs, and perform non-destructive weld testing. Although it

appears to be an expensive "high tech" application for "low-tech" facilities, the Sea

Ferret has saved millions of dollars in maintenance, troubleshooting, and emergency

repair costs while reducing the manpower and risks associated with this type of

work. (Underwater Resources, 1989.)

2. Sea Owl

The Sea Owl is a small industrial ROV from Scandinavian Underwater

Technologies (SUTEC) that incorporates many of the latest design concepts in the

ROV industry. Instead of a torpedo-shaped body-of-revolution hull or an open-

frame cage to house its components, the Sea Owl uses a hydrofoil twin-cylinder hull

that the operator "flies" through the water. While earlier ROVs used a single

propulsor, the Sea Owl's seven thrusters give the vehicle maneuvering agility and

mechanical redundancy. With its five-foot length, two-foot beam, three-knot speed,

and 1500-foot depth limit, this ROV is a low-cost system used by oil platforms and

salvage operations. The "300" version has many different near-shore applications

7



and the larger 500 model is a more expensive platforn suitable for open-ocean

salvage or exploration. (SUTEC, 1989.)

3. Sea Twin

The Sea Twin (also by SUTEC) is a follow-on to the Sea Owl design

that adds extra features for a different environment. With its larger hull and

additional thruster, this ROV is nearly fifty percent bigger and has twice the

displacement of the Sea Owl. The greater size and thrust is used for higher power

and increased stability in rapid currents where smaller ROVs are unable to operate.

In addition to its vehicle improvements, the Sea Owl system aiso uses fiber-optic

signal transmission technology to produce a smaller, low-drag tether cable with a

much wider signal bandwidth. This advanced cable makes the ROV capable of

simultaneously handling several different types of sensors or of transmitting real-

time high-resolution video. (SUTEC. 1989.)

4. ECA

This French corporation is one of the world's largest ROV producers and

is noted for their low-cost designs of highly adaptable vehicles. Their Pope ROV is

a general-purpose vehicle used for near-shore or coastal operations, with a variant

for open-ocean work. Another ROV, the PAP 104, is designed for high-resolution

searches and charting applications; its manipulators also possess a high degree of

manual dexterity that make this system very effective in underwater demolition.

The PAP 104 Mk5 is a military version used for mine warfare. As of early 1989,

ECA has sold over 325 ROVs to many corporations and to the navies of eleven

European and Asian countries. (ECA, 1989.)

8



5. Gemini 6000

Eastport International, Inc., has made significant advances in the use of

ROVs for open-ocean search and salvage. Their Gemini 6000 ROV is the size of a

small auto with a 9,000 pound displacement and two seven-function hydraulic

manipulators. The vehicle uses several photographic systems and a fiber-optic link

to transmit real-time high-resolution color video as well as record 35mm pictures

and stereo photographs.

In 1985, an earlier version of the Gemini 6000 located and recovered

most of the remains of a Boeing 747 aircraft from a depth of 7000 feet. In 1986,

this ROV mapped the crash site of the space shuttle Challenger, and the vehicle

augmented diver's salvage efforts by retrieving many of the spacecraft's fragments

from deeper waters. (SUBNOTES, 1989a.)

In February 1989, the Gemini 6000 recovered an aircraft flight recorder

from a new record salvage depth of 14,800 feet. This was also the first use of an

ROV in an aircraft accident investigation; it involved a survey of more than 200

objects in an area of over a square mile. During 345 hours of bottom time, the

Gemini 6000 transmitted many hours of high-resolution video, took over 2400 35mm

photos, and recorded over 300 stereoscopic photos. (Sea Technology, 1989.)

6. Oceanographic Research

The Monterey Bay Aquarium Research Institute (MBARI) is a non-profit

research institute founded in 1988 to study the oceanography of Monterey Bay on

the central California coast. The bay is actually a deep underwater canyon that

starts less than a mile offshore and reaches depths in excess of 5000 feet within ten

9



miles of the coast. The canyon's close proximity to land and its unusual features,

the rich diversity in the bay's ecology, and a large number of oceanographic

research facilities in the area have all combined to give MBARI a number of

opportunities to conduct deep-ocean research.

To support this work, MBARI uses an open-frame ROV from

International Submarine Engineering of Canada. The vehicle, also about the size of

a small car, has four thrusters, seven camera systems, and a seven-function

manipulator. It is capable of operating in depths up to 6000 feet and has already

used its deep-ocean collecting, surveying, and photographic abilities to help explain

several unresolved research questions. (SUBNOTES, 1989b.)

C. AUTONOMOUS UNDERWATER VEHICLE TECHNOLOGY

The technology used in ROVs is directly applicable to AUVs since both types

of vehicles require sophisticated controls, rapid maneuverability, extended ranges,

high-resolution sensors, and high-capacity signal processing. However. the most

significant AUV technological development has been the large-scale introduction of

cheap, high-performance computer processors. The wide availability of the Intel

80386 and Motorola 68030 series of processors, as well as RISC and VME

architectures, has moved AUV projects out of the lab and into industrial

development (SUBNOTES, 1989). Research has produced ROVs that routinely

operate in the harsh ocean environment; the next challenge is to make autonomous

vehicles that are as reliable as ROVs and that will perform tasks which ROVs

cannot. This section will survey industrial, academic, and military AUV research.

10



1. XP-21

Applied Remote Technology, Inc. .(ART), has developed a test hull for

its prototype AUV. The XP-21 has a 16-foot torpedo-shaped hull 21 inches in

diameter with a displacement of 1700 pounds; it can accommodate a 700-pound

payload of up to eight cubic feet. This vehicle can submerge to 2000 feet with a

six-hour endurance at six knots. ART is using the XP-21 to verify the performance

of hardware and software for navigation, guidance, control, and communications

subsystems that will be incorporated into a larger AUV. (SUBNOTES, 1988; ART,

1989.)

2. PTEROA

The University of Tokyo has developed a small AUV for independent

sea floor mapping. The PTEROA is roughly five feet long with a three-foot beam

and a maximum speed of 3.5 knots on two small thrusters. The designers

deliberately simplified the AUV's control and propulsion systems to minimize power

demands and to reduce computing overhead. The vehicle submerges with ballast to

allow it to descend in a slow glide to the sea floor. Once near the bottom, the

PTEROA drops its ballast and proceeds along its search pattern, recording data while

using its sonar to navigate along bottom contours. (Tamaki, 1989.)

3. EAVE East

One of the most advanced operational AUV research programs is

conducted by the University of New Hampshire Marine Systems Engineering

Laboratory. The Experimental Autonomous Vehicle (EAVE) is an open-frame,

highly-maneuverable submersible with two models for use as system development

11



test beds. (This program is called "EAVE East" to distinguish it from the San

Diego Naval Ocean Systems Center's "EAVE West" tethered vehicle.)

Where feasible, the EAVE East uses redundant sensors to verify its

inputs for critical reliability in a hostile operating environment. A pressure

transducer and a fathometer measure the vehicle's depth while a five-beam sonar is

used for obstacle detection and avoidance. The EAVE's navigation module first

fixes its position with both long- and short-baseline acoustic systems and then

verifies the AUV's heading with an on-board magnetic compass. (Jalbert, 1987.)

The EAVE's computer architecture achieves an innovative integration of

several different hardware and software systems. A VME bus coordinates eight

Motorola 68000-series processors with 4 Mbytes of RAM and an 800 Mbyte optical

disk. Several sub-processors handle the tasks of external I/O, rapid memory access,

and memory caching without lowering execution speed. A real-time operating

system supports the AUV's Portable Comnmon LISP Subsci (PCLS) software. This

operating system is used to divide the EAVE's resources into a high-level and a

low-level hierarchical architecture for mission planning and vehicle control.

The high-level component of the system uses five of its processors to

update and evaluate the environmental knowledge base, to replan the mission if

unexpected events or casualties occur, and to supervise the lower-level system

components. These processes run in a loop with approximately a 100-second cycle

time. The low-level portion uses the remaining three processors to analyze sensor

data, control vehicle motion, and collect additional sensor inputs approximately once

per second. (Shevenell, 1987.)

12



The vehicle's hierarchical control structure closely mimics the division of

responsibility used in human chains of command. The mission-level planner is at

the top of this hierarchy and accepts human user input for the mission's objectives

and priorities. The planner develops a launch-to-recovery mission profile that

examines energy requirements, time limits, and risk factcrs to evaluate a number of

alternatives and select the optimal mission plan. Instructions are then sent to lower-

level planners that deal only with the next specific sub-task to be performed. As

the mission proceeds, the top-level planner updates its status and replans the mission

to accomnodate unexpected events. This structure produces the intelligent, adaptive

behavior that autonomous vehicles require for executing complex missions in a

hostile environment. (Blidberg and Chapell, 1986.)

4. DARPA Funding

Encouraged by the rapid development of industrial and academic AUV

programs, the Defense Advanced Research Projects Agency (DARPA) has

committed up to $100 million to support AUV projects with military applications

(Eisenstadt, 1987). This includes a recent $23.9 million contract issued to Draper

Laboratories for the development of two AUVs to serve as test vehicles for various

U.S. Navy missions. These AUVs will carry instrumented systems and will execute

mission packages developed by Martin Marietta (ROV News, 1989).

D. CONTROL SYSTEM SOFTWARE ARCHITECTURES

The most significant difference between AUVs and ROVs is the substitution

of an artificial intelligence (,M) control system for the human operator. Although

thL.,e control systems can execute instructions and process data much more quickly
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and more reliably than any human, they frequently lack the flexibility and response

time needed for a rapid reaction to unexpected events or casualties. Much of

today's AUV research is concentrating on the development of computer

architectures, languages, and operating systems that can provide this flexibility while

retaining speed and reliability. Two aspects of these issues are discussed below.

1. Distributed versus hierarchical control

Many different real-time control systems attempt to improve their overall

speed by having data pass through as few processors as possible. Ideally, this

system would use some sort of memory to receive and store incoming data while a

master processor would examine all data and immediately dispatch it to the

appropriate subsystem for further processing. After manipulating the data, all co-

processors would report their results as additional data, which would then be re-

dispatched to the next appropriate co-processor, and so on.

These processing schemes have been grouped under the heading of

"blackboard systems" to describe the way data is posted at a central location to

await pickup for analysis. A blackboard system can use object-oriented

programming to share information between expert subsystems without the time-

consuming overhead of data transfer, and one implementation of this scheme is

being used to support the development of an AUV control system. (Doty and

Wachter, 1986.)

Although blackboard architectures can minimize unnecessary data

transfer, current implementations have difficulty achieving satisfactory response times

or flexibility. Each expert system devotes a significant overhead (hardware
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interrupts) to "checking the blackboard" for arriving data, and an attempt to assign

higher priorities to time-sensitive data events frequently generates unacceptable

additional overhead. Another blackboard drawback is the method by which data is

identified for the appropriate expert system. Emergencies, errors, and unexpected

results will be posted but may never be "picked up" by an expert subsystem if the

data does not fit into an identifiable category. An exception-handling mechanism

can notify the system of these problems but is usually unable to correct them, so

the machine's processing gradually slows down or abruptly crashes.

A hierarchical system imitates human chains of counand by dividing

large projects into progressively smaller tasks that are handled at lower levels. The

lower processing levels accept results from even lower levels, operate on the

information, and pass their results up to a higher level. The higher levels will act

on this input, pass orders and data back down to the lower level, and report their

results to progressively higher levels of control. In this way, an object-oriented

system can manipulate small objects that are nested in larger objects: the lower

objects usually can communicate only by passing their data through their parent

object.

A hierarchical architecture ensures that all data is eventually handled by

some process or object. However, data-sharing between adjacent modules is

restricted so the same information exchange requires more handling than a

blackboard system. In addition, the system's central knowledge base is available to

fewer processors so more data transfers are needed to get information to the

appropriate location. Although hierarchical systems use fewer interrupts for I/O
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polling, lower-level processors can block the execution of a higher processor; the

higher level may be idle until data is passed up to it. Finally, while a hierarchical

system will handle errors and unanticipated events more easily, the division of

responsibilities is crucial to prevent higher-level processors from being overloaded

by routine tasks and exception-handling.

The deficiencies of each individual architecture tend to make their

separate implementations unwieldy, slow, and unreliable. However, systems that

combine elements of the two schemes often achieve significant improvements with

few side effects. These "hybrid" architectures can use faster blackboard concepts to

reduce data transfers by making information more available while their hierarchical

structures ensure that exception-handling is successfully completed. (Doty and

Wachter, 1986; MacPherson, 1988.)

2. Language Alternatives

a. LISP versus Prolog

Two of today's most popular artificial intelligence languages are

LISP and Prolog. Conceived in the late 1950s, LISP is one of the earliest Al

languages and has had over three decades of refinement and standardization. Its

modular code, list-oriented structure, and low-level operators give it a speed that

justifies its recognition as the "assembly language" of Al. On the other hand,

Prolog is a relatively new and extremely powerful language with a rule-based

structure that makes it very useful for developing the collections of rules known as

"expert systems."
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Each language has several deficiencies. Compared to Prolog, LISP

is faster but much harder to read. Its recursive routines make programming counter-

intuitive and debugging very difficult. Its maay dialects have recently been

standardi'ed but this standardization is slow and still incomplete. Although LISP

executes very quickly, its low-level design also makes it difficult to implement

higher-level Al abstractions. In particular, LISP lacks any built-in inferencing

mechanism.

Since Prolog is a high-level language, it is easier to design high-

level structures. However, the language executes more slowly than LISP and Ptolog

requires large amounts of memory for its back-tracking execution. Although Prolog

simplifies the construction and maintenance of large rule-based systems, it can be

difficult to thoroughly test these system's permutations and subsequently correct

unintended side-effects. Continued improvements to Prolog and its associated

debuggers will improve this language's facilities.

The top-level controller of an AUV will require a system with the

speed advantages of LISP yet the power and flexibility of Prolog. The construction

of such a system will depend heavily on a large library of reliable mission-

execution subroutines using portable code that can function as "building blocks" for

the next generation of missions and systems.

b. Expert System Shells: KEE versus ART

Expert systems have been developed to make up for LISP's

inferencing deficiencies: these systems are one example of an attempt to combine

the best features of LISP and Prolog. KEE (Knowledge Engineering Environment)
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and ART (Automated Reasoning Tool) are examples of a class of software called

1expert system shells". Programmers use these software tools to build knowledge-

based expert systems and to apply them to large, complex problems. These systems

are especially useful in AI applications where the problems may be ill-definea or so

complex that the software system must mimic the decision-making processes of

human experts.

The KEE shell contains a number of features for manipulating a

knowledge base and its corresponding set of rules. Part of this v;ystem is a

graphical user-interface module and a set of object-oriented programming routines,

these two frames provide an intuitive and powerful means of organizing and

executing LISP functions. (KEE User's Manual, 1986.)

The ART shell also uses a rule-based scheme to operate on its

expert system. Four different types of rules can be used to describe and manipulate

a knowledge base. A powerful ART "inference engine" will compile and execute

this collection of rules and data, repeatedly drawing conclusions from the knowledge

base and applying these conclusions to generate more data for the knowledge base.

This scheme continues until a specific goal is achieved. (ART Reference Manual,

1986.)

Both shells use a proprietary structured language to implement their

rule-based systems, and both shells are able to incorporate LISP functions into their

execution for the controi ot other systems. Although the lack of a standard rule-

based language (such as Prolog) is a drawback, the AUV simulator does not use
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any rules to execute its missions. Instead, the simulator uses its shell to organize

and to efficiently execute the many routines that make up the expert system.

Since these shells are applicable to many situations involving

complicated path-planning or scheduling problems, they are both suitable for the

mission level of the AUV simulator. Compared to KEE, the ART shell has a much

more powerful rule-based language, but its interfaces are not intuitive and can

present problems for inexperienced users. Since the simulator uses no rules,

ART's user interface is a significant disadvantage. KEE has been chosen since it

provides the simplest user interface-- one that requires little system knowledge for

mission execution, and one that can be quickly manipulated with a mouse.

c. Ada

When it was faced with rapidly-rising software development and

maintenance costs and reduced software portability, the U.S. Department of Defense

(DoD) sponsored the development of a high-level programming language that would

be suitable for a wide range of applications. The Ada programming language filled

these specifications and is building a large library of portable subroutines that will

reduce software development, maintenance, and compatibility costs. The DOD has

subsequently decreed that Ada will be the programming language for all mission-

critical U.S. military projects and has trademarked the language to enforce its

standardization.

Many of the guidance, navigation, and control subsystems of an

AUV or ROV can be programmed in Ada. However, an AUV's top-level planner

is a specialized Al construct requiring a language with the features and power of

LISP or Prolog. Ada is not yet suitable for this application.
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E. COMPUTER SIMULATION OF VEHICLE DYNAMICS AND CONTROL

In the last ten years, the rapid deployment of ROVs has validated vehicle and

sensor designs. ROVs are readily available for uses in an ever-increasing variety of

environments and applications, and their control systems and signal-processing

capabilities continue to improve. Recent ROV advances have largely been

technological updates of existing concepts, and industry's experience is lowering the

subsequent research and development costs. Many improvements are made by

inexpensive alterations of "off-the-shelf" components instead of through new designs,

and the industry will mature as vehicles become cheaper and more available to the

common user.

AUV design is not so advanced. While ROVs can cheaply use rapid

protoryping and testing techniques, AUVs are still quite complicated and costly.

The operational testing process subjects these expensive vehicles to harsh and

unpredictable environments where the logistics are difficult and some AUTV losses

are unavoidable. While there is no substitute for operational experience, most of

the AUV's engineering problems have been solved while learning how to operate

ROVs. The last step is the development of a high-level mission planner that can be

simply and cheaply tested without expensive logistics and unaffordable losses.

One solution to this problem is computer simulations. Through the use of

vehicle simulators, Al mission planners can be developed in the laboratory and can

receive data inputs from artificial (computer-generated) sources. The planner's

outputs can be used to drive a simulator whose actions can be observed and

interpreted to evaluate the effectiveness of the planner without having to risk the
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vehicle. The same powerful computer systems that have revived AUV research can

thus be used for rapid AUV prototyping and low-risk initial testing.

One of these systems was developed and tested in 1986. A Westinghouse

research team, as part of a preliminary AUV design project, programmed a test

system for an AUV mission planner and navigator. The inputs and outputs for this

planner are handled by a simple graphics simulator that provides the AUV with

information about the surrounding environment and then revises its display to show

actions ordered by the AUV mission planner. The simulator generates and updates

a picture that shows the planner setting up a mission, the navigator determining a

path, and the AUV executing these orders while reachiig its objectives and avoiding

obstacles. (Schweizer and Oravec, 19F6.)

F. SUMMARY

This chapter presents a survey of previous research and accomplishments that

are relevant to this thesis. A listing of representative current ROV technology is

followed by a discussion of AUV research and issues. Different system

architectures and programming languages are presented and will be evaluated in

following chapters. This chapter concludes with a brief discussion and an example

of the advantages of modem computer workstations for dynamic system simulation.
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HI. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

This thesis provides a real-time graphical simulation of a proposed AUV and

facilitates the devcelopment and tcsting of various control algorithms. The simulator

is part of a Naval Postgraduate School (NPS) research project that will design,

build, and test a series of Autonomous Underwater Vehicles.

B. VEHICLE CHARACTERISTICS

The NPS Autonomous Underwater Vehicle is modelled after the Swimmer

Delivery Vehicle (SDV) used for the delivery and extraction of U.S. Navy Special

Warfare Teams. The actual NPS Model 2 AUV will resemble the SDV so the

simulator's vehicle dynamics have been scaled to the dimensions of the AUV

currently under construction.

The simulator's controller carries out AUV operations by directing its output to

either of two graphical representations. The original graphics display is a simplified

vehicle that models complex AUV missions in the open-ocean environment. The

second graphics display uses a more sophisticated SDV hydrodynamic model in a

small "test pool" to evaluate various AUV configurations and to develop the actual

control algorithms that will be used by the NPS Model 2 AUV.
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1. The Original Vehicle

The first vehicle simulation (MacPherson, 1988) permits mission execution

without requiring a detailed implementation of AUV dynamics. The simulator

represents a small manned vehicle with a control panel and a "through the

periscope" display similar to that of the U.S. Navy's Sturgeon class attack

submarine. The vehicle has a single screw and rudder and maintains continuous

neutral buoyancy. Aft, sternplanes impart a hull pitch angle for large depth changes

while forward-mounted bowplanes provide more precise depth control without

generating a pitch angle. Although users can manually operate the AUV, the

vehicle is normally under autopilot control.

The original dynamic model consists of a simple point-mass approximation

governed by one acceleration equation, two rate equations, and one attitude equation.

The vehicle's location and orientation is described by applying these equations at a

10-Hz rate and by setting the autopilot's control surface positions according to depth

or course error. AUV speed is chosen by the autopilot and is limited by battery

charge or by the onset of cavitation. Acceleration is fixed at 1 knot/sec while

depth and azimuth rates depend on a combination of speed and control surface

angle. The vehicle's pitch angle is assigned a steady-state value determined by the

AUV's speed and sternplane angle.

Although the AUV displays rigid behavior and little inertial delay, no

attempt was made to model actual submarine dynamics since these would have little

impact on the large-scale decisions implemented by the mission controller. This
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model is a simple and effective way to display the actions and results generated by

mission execution algorithms.

2. The NPS AUV

The second simulation is based on the Swimmer Delivery Vehicle's

dynamics and on preliminary NPS model hydrodynamic test data (MacDonald,

1989). The hull shape is a flattened cylinder with a rounded bow and a tapered

stem; the AUV maneuvers with bow planes, stem planes, twih rudders, and twin

screws. The dynamics model uses a vehicle mass of 12,000 pounds at neutral

buoyancy with a length of 17 feet, a beam of five feet, and a height of 2.5 feet.

The NPS Model 2 AUV is equipped with two vertical and two horizontal thrusters,

so the simulator image also shows these thrusters. (See Figure 3.1.)

The AUV's position, orientation, and velocity is determined by calculating

hydrodynamic drag forces and Euler angle rates and then updating these parameters

at a 30-Hz rate. The AUV is displayed from an external point of view instead of

the earlier "through the periscope" perspective. The simulation algorithm is a

considerable improvement over the original model since the AUV exhibits realistic

acceleration and inertial behavior.

The original version of this simulator (Schwartz, 1989) was designed to

evaluate AUV hydrodynamic coefficients and to examine the resulting vehicle

dynamics under a variety of speeds and pitch angles. The simulator relies on the

user's manipulation of the vehicle's control surfaces and its speed; there is no

autopilot controller.
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The second generation of this program uses a simple autopilot depth- or

course-error calculation to set control surface positions for maneuvers. Autopilot

orders create control surface angles which in turn act on the AUV hydrodynamic

model to generate hull pitch angles and resulting changes in depth or course.

Although this first-order controller produces abrupt and non-linear control surface

behavior, the NPS AUV design team is developing an advanced control system.

The simulator's code structure will allow this advanced controller algorithm to be

installed between the autopilot and the hydrodynamic model.

Although the hydrodynanic model has a length of 17 feet, the vehicle

displayed on the simulation graphics workstation is scaled to a length of five feet.

This inconsistency between the hydrodynamic model and the visual vehicle makes

the simulator's NPS AUV appear to maneuver differently from the characteristics of

a 17-foot model. This effect does not affect the simulator's mission planning; the

inconsistency will be corrected when the hydrodynamic model of the NPS AUV is

incorporated into the simulator.

C. ENVIRONMENT

The ocean environment for the original ALUV simulator is described in detail in

MacPherson (1988). The simulation begins with the AUV at periscope depth in a

sector of water five nautical miles on a side. The sea floor of this model is a

submerged cone with an exposed island (the cone's vertex) near the center of the

sector. In addition to the island and its shoals, the AU'V must also contend with a

number of surface contacts-- military vessels, merchant ships, and buoys. The large
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body of water and its congested environment provide a realistic test of the AUV's

mission control and guidance software.

The water environment for the NPS AUV simulator is modelled after a

proposed test site for the actual vehicle. The simulation displays a "swimming

pool" (120 feet by 60 feet by eight feet deep) containing a number of submerged

cylindrical obstacles. The simulator's AUV and test pool are scaled to the actual

sizes of the NPS AUV and its test site, although the hydrodynamic m,'2z! ;s not

scaled to this environment. (See earlier discussion in B.2.) The test pool is a

much simpler environment than that of the earlier simulation and is intended to give

the AUV design team a realistic way to test various algorithms for mission control,

guidance, and vehicle control before integrating the software with the AUV.

D. MISSIONS

Autonomous vehicles will operate in environments where humans cannot or do

not wish to go. The Defense Advanced Research Projects Agency (DARPA) has

identified over 70 military missions especially suited for ALUV execution (Bane and

Ferguson, 1987), and this simulator incorporates a representative sampling of these

tasks. The simulator's mission control software is divided into four main categories:

charting, reconnaissance, surveillance, and covert payload delivery.

In each category, the mission controller executes the algorithms required to

maneuver the AUV to the desired location, perform its required tasks, and return the

vehicle to its starting position. Additional algorithms handle other tasks or

emergencies such as path planning, uncharted shallow water, or close contacts.
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Smaller "missions" test the NPS AUV guidance and control systems. These

tasks, subsets of the larger missions, examine the vehicle's ability to transit and

navigate in the test pool. This starts with simple maneuvers such as crossing the

pool or circumnavigating it, and builds into more complicated sequences requiring

the vehicle to execute depth changes, to pass through specific coordinates, and to

maneuver for collision avoidance. Since the NPS AUV is capable of hovering,

additional missions will be developed requiring the vehicle to switch between its

propulsion and hovering systems for collision avoidance or reconnaissance.

E. CONTROL SYSTEM ARCHITECTURE AND LANGUAGES

The NPS AUV is controlled by a hierarchical system architecture that divides

control among three areas: the mission level, the guidance level, and the execution

level. Each section exchanges data or comnands with its adjacent level and is

responsible for monitoring or executing a specific portion of the AUV's mission.

1. The Mission Level

The mission level is the interface between the human user and the AUV.

This level, written in the KEE software development shell, presents a menu of

mission choices for the user's selection. After a choosing a mission, the user

provides critical parameters for the AUV to execute. The mission level plans the

execution of the task and issues the appropriate commands to the guidance level.

Execution begins after initial path planning has been completed, and the mission

level supervises the successful completion of the user's assigned tasks.
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2. The Guidance Level

The simulator's guidance level receiyes orders from the mission level and

generates guidance commands for the AUV's execution level. This software is

written in Common LISP and is actually a set of modular procedures implemented

according to the tasks selected by the mission level. One important procedure of

this level is a global path planner using a best-first search algorithm to plot an

AUV track which the vehicle follows to avoid charted obstacles. When the vehicle

begins to transit toward its goal, the guidance level requires additional mission-level

commands in order to invoke the correct procedures.

A second important procedure of the guidance level receives sensor inputs

for processing and interpretation. Sensor data may require the guidance level to

modify its commands to the execution level to avoid collisions or to take advantage

of unanticipated mission opportunities.

3. The Execution Level

The execution level is written in the C language and is the lowest level of

simulator control. This level receives guidance conunands and executes routines to

maneuver the AUV to the correct depth. course, and speed. The execution level

updates the graphics displays (between ten and thirty times per minute) to reflect

the mission's current status and passes the AUV's latest position up to the guidance

and mission levels.
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F. SIMULATION FACILITIES

The AUV simulator runs on a LISP machine and an IRIS graphics workstation.

Two models of each machine were available for this thesis and were used to

demonstrate performance variations and code compatibility.

1. Texas Instruments Explorer H LISP Machine

The TI Explorer H was chosen to execute the mission and guidance levels

of simulator control. This machine is an advanced single-user workstation that uses

the KEE software development shell to support the generation of large-scale and

complex artificial intelligence programs. The programming environment includes

very high speed proprietary processors, a large memory, sophisticated caching and

memory-management systems, high-resolution black-and-white graphics, and

networking facilities. The KEE shell gives the user a productive and intuitive

programming environment for developing large and complex applications, (TI

Explorer II User's Manual, 1988.)

2. Symbolics LISP Machine

The Symbolics 3675 LISP machine is also an artificial-intelligence

workstation with the KEE software development shell. It has many of the same

features as the TI LISP machine with additional support for image processing.

Although the Symbolics LISP machine is slower than the TI, its image-processing

capability will be incorporated into future research. (Symbolics User's Manual.

1987.)
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3. IRIS 2400T Workstation

The Silicon Graphics ERIS-2400T graphics workstation is used for the

original AU'! simulator execution level and display. This system is a Unix-based

high-resolution 1024 x 768 color display processor optimized for graphics

applications. Its robust and highly efficient capabilities are primarily embedded in

hardware instead of the more common software implementation. The system's fast

execution is supported by an applications/graphics processor, a hardware matrix

multiplier pipeline (the "Geometry Engine"), and a 32-bitplane raster subsystem.

This workstation's specialized capabilities and speed make it particularly suitable for

real-time displays. (IRIS User's Guide, 1986.)

4. IRIS 4D/70GT Workstation

The newer AUV simulator runs on the IRIS 4D/70GT graphics

workstation. This machine, a third-generation descendant of the IRIS 2400T, is the

result of extensive hardware and software design improvements. The new system

pipeline architecture uses multiple RISC-based CPUs with a high-speed 64-bit data

1-us and a 96-bitplane raster subsystem. In addition to a much faster hardware

Geometr' Engine, the Unix-based software supports a style of object-oriented

programming that greatly speeds image processing and updating. The system

readily supports a higher update rate for a real-time AUTV simulation while

simultmeously incorporating graphics lighing and shading models. (IRIS 4D User's

Guide. 1988.
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G. SUMMARY

This chapter discusses the problems of this thesis in detail and outlines

proposed solutions. Several AUV models are described and differences in their

mathematical and dynamic models are contrasted. The AUV simulator missions and

environments are discussed and the system's architecture and programming

languages are explained. Finally, the simulation's LISP machine and IRIS graphics

workstation facilities are listed.



IV. AUV SIMULATOR DESCRIPTION

A. INTRODUCTION

This chapter describes the simulation software. The desc,"rption starts with an

explanation of the hierarchical AUV software architecture and how each level of the

hierarchy carries out its tasks. The mission level of the software is discussed first,

showing how the user inputs objectives to enable the controller to plan a mission

and issue commands to the guidance level. The guidance section of this chapter

explains how mission-level commands are implemented by the guidance level and

how the results are represented at the execution level. A description of the

software's execution level is followed by an explanation of the communications

code that links all machines and software modules. The last section of this chapter

is a user's manual- this manual repeats portions of the MacPherson (1988) manual

for clarity and continuity.

B. SOFTWARE ARCHITECTURE

This thesis has preserved the hierarchical software architecture implemented by

MacPherson (1988). as can be seen in Figure 4.1. The top level of the AUTV

software architecture is the mission level-- a knowledge base implemented using the

KEE software development shell. The user interacts directly with this knowledge

base by selecting a mission and then supplying additional informtion when
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prompted. Once this information has been acquired, the simulator operates

autonomously to carry out the user's mission and report its completion.

The simulator begins by accessing the second level in its hierarchy. The

mission level starts its planning by passing its parameters down to the path planner

and navigator. The planner and navigator are guidance-level Common LISP

software modules which consult the guidance level's environmental database to

select a path to the mission's goal and report this path back to the mission level.

Once supplied with the mission parameters and a path to the mission's goal,

the guidance level communicates with the hierarchy's third level-- the execution

code. Maneuvering parameters are interpreted by the execution-level autopilot as

control surface commands that put the simulator's AUV on the path's course, speed,

and depth. The execution level software includes sensor modules that provide

simulated electronic. acoustic, and visual environmental inputs to the AUV. These

inputs are passed back up the hierarchy to the navigator and the mission supervisor

where the data is analyzed and acted on.

C. THE MISSION LEVEL

The KEE (Knowledge Engineering Environment) software development shell

organizes the mission level. This powerful software development tool runs on the

TI Explorer II or the Symbolics LISP machines and is used to place the simulatoi's

many LISP functions into an easily-accessible structure. Although KEE includes a

proprietary rule-based language, this simulator uses no rules to set up its relations.

The structure of this knowledge base graphically links related missions on a tree

diagram that can be traversed by the user with a mouse: the user makes a selection



and is prompted for additional information that is used to plan and execute the

mission. Additional KEE utilities load the appropriate LISP files, display messages,

update the knowledge base, and display the mission tree. The missions in this tree

are created using a template system described in Chapter IV of MacPherson (1988).

The first NPS AUV missions will test the vehicle's propulsion and control

surfaces. Once the mechanical systems operate satisfactorily, more sophisticated

missions will be implemented to evaluate the AUV's ability to operate

autonomously in a variety of situations. One of these missions under development

is reconnaissance-- the AUV will be required to move about the pool, to locate and

map obstacles for later analysis, and to trail moving objects while recording sensor

information.

D. THE GUIDANCE LEVEL

The guidance level is written in Common LISP and runs on either the TI

Explorer D or the Symbolics. These software modules, consisting of the mission

navigator and path planner, receive orders from the mission level and provide

guidance commands to the execution level. The first order from the mission level

passes the mission's start and goal coordinates to the path planner. The path

planner conducts a best-first search (Barr and Feigenbaum, 1981) to produce a series

of coordinate subgoals which the vehicle will follow. These subgoals are passed to

the smlulation navigator and the mission's autonomous execution begins. Using

frequent data exchanges via the communications interface, the navigator provides the

execution level with information on the next subgoal, the autopilot

course/speed/depth, and the command required to execute the current phase of the
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mission. The communications interface passes back execution-level data on sonar

contacts, the vehicle's position, and the depth of water under the AUV's keel. The

guidance level processes this data and modifies the mission commands as necessary

for the next data exchange.

The guidance level software is actually a number of LISP modules, each

designed to perform a specific part of a mission. For example, the "transit" module

contains code that commands the vehicle to move from the mission's starting

coordinate to its next subgoal. This module executes from subgoal to subgoal until

the AUV has reached its final goal.

E. THE EXECUTION LEVEL

The execution level is written in C and runs on the IRIS 2400T or the IRIS

4D/7OGT graphics workstation. This level is the lowest level of AUV control, it

executes either manual or autopilot commands to update vehicle and environmental

displays. In autopilot mode, the execution level receives guidance-level commands

for the location of the next mission subgoal, AUV course/speed/depth, and the

mission phase. The execution level code inte:,-ets these commands, positions each

control surface to achieve the AUV's parameters, and updates the graphics display

to show the vehicle's current orientation.

At each update, the execution level passes sensor information up to the

guidance level. This data is processed and can be used to alter the next set of

guidance commands. An example of this occurs when the ALUV's sensors report

"uncharted" shallow water or obstacles (features unknvn to the navigator's
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environmental database) causing the guidance level to alter its commands, reposition

the AUV, and prevent a collision.

1. The Original AUV Graphics Display

The original AUV display (MacPherson, 1988) is the primary means for a

user to observe the performance of a vehicle as it executes an open-ocean mission.

The display contains four sections: an "out the periscope" view of the environment,

a navigation chart, a sonar screen, and a control panel. This presents the operator

with a visual perspective from the AUV's point of reference, a plot showing the

AUV's position, course, and goal, a sonar display of the contact situation, and a

representation of the AUV's control surface positions. (See Figure 4.2.)

The upper left portion of the display is the periscope view. The AUV's

periscope can be trained in azimuth or in elevation; it shows the vehicle's

environment in either low- or high-power magnification. Several ships, islands, and

buoys are included in this environment to provide obstacles for the AUV to avoid.

When the AUV submerges, this periscope is automatically "lowered" and secured at

a depth of fifty feet; the periscope is "raised" at fifty feet when the AUV returns to

the surface.

The upper right portion shows the AUV's active sonar display. The

execution-level code simulates an active sonar pulse transmission; contacts are

shown on the display as black dots. Two cursors on the sonar display represent the

vehicle's course (black) and the bearing on which the periscope is trained (green).
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The contact situation is updated every cycle and this information is passed up to the

guidance control level.

The display's lower left portion depicts a navigation chart representing the

simulator's environment and the vehicle's position. During autopilot control, a red

"X" marks the AUV's position, the simulator's "start" and "goal" coordinates are

outlined with red circles, and a red line shows the AUV's course. The chart uses

shades of blue to show different water depths; land is displayed in black. As the

guidance level executes its mission, the chart updates the AUV's position and

displays the autopilot course, speed, and depth.

The display's center and lower right portions contain control panel

information. Propulsion status is shown with a "battery charge" gauge to simulate

the AUV's power supply; an alarm sounds when the vehicle reaches a low battery

condition. Panels below the battery charge gauge show the AUV's actual course,

speed, depth, pitch angle. and control surface positions so that the user can follow

the vehicle's reactions to guidance-level commands.

2. The NPS AUV Graphics Display

The NPS AUV display has been adapted from a model prograimmed by

Schwartz (1988) and is the user's means to observe the vehicle's performance

during small-scale test missions. This simulation display consists of two sections:

a representation of the AUV in a "test pool" from the perspective of an external

viewer, and a control panel display showing the vehicle's and observer's parameters.

This graphics display is intended to simulate actual test conditions for the

NPS ALJ' and is designed to show a realistic presentation of the vehicle in its
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environment. The external perspective shows the NPS AUV (approximately five

feet long) in a test pool (approximately 120 feet by 60 feet by eight feet deep) with

several cylindrical obstacles. For path-planning purposes, the lower-left comer of

the pool is the vehicle's coordinate origin with the pool's longer dimension on a

north-south axis. The display allows the user to view the AUV's orientation and

control surface positions as it maneuvers inside the test pool.

The control panel is similar to the original AUV control panel display. In

addition to vehicle course, speed, depth, and control surface positions, it also gives

the coordinates of the viewer's position with respect to the AUV. In manual

control, the user can "shift position" to observe the vehicle from different

perspectives as it executes its missions.

F. COMMUNICATIONS SOFTWARE

The execution-level code on each IRIS graphics workstation requires

communications support for data exchanges with the guidance-level code on the

LISP machine. Both communications modules link a graphics workstation with a

LISP machine via an Ethernet cable; each module passes the same data types and

structures in slightly different formats. The user selects the machines on which the

sinulation will be run; this detemines which portions of the comrnmunications

modules will be used to support the simulation.

The original communications code is adapted from MacPherson (1988); this

thesis did not intend to alter that communications subsystem when the simulation

was extended from one IRIS workstation to another. However, there is a significant

difference between the hardware architecture and the operating systems of the two
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IRIS machines-- and initial attempts to port the code were unsuccessful. Another

thesis (Shannon and Teter, 1989) solved the problem of exchanging simulation data

between a Symbolics machine and the IRIS 4D/70GT; that code was adapted for the

NPS AUV simulator. Although additional effort will be able to convert the original

communications code, its algorithms are not efficient and, as described below, this

research used a different approach.

Regardless of the machine-specific algorithms, the information exchange

between a LISP machine and an IRIS workstation allows the guidance level to send

commands to control the execution level; the execution level uses the

communications code to send sensor data back to the LISP machine for analysis.

This information exchange executes in a loop that occurs about every three seconds.

After carrying out its initial mission commands, the execution level passes to the

guidance level a data package containing the AUV's present course, speed, and

depth. the depth under the ALV's keel, and sonar contact bearing/range information.

The LISP machine analyzes this data and sends back the mission phase command,

the coordinates of the next subgoal, and the autopilot course, speed, and depth

required to reach that subgoal.

This communications code is not critical to the success of the NPS AUV, so

emphasis was placed on implementing a functional solution instead of a robust,

efficient subsystem. While both versions of the communications code caused

considerable problems during simulator implementation, these subsystems will not be

required for actual AUV operations. The NPS AUV architecture design uses a
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single processor; data is passed between the guidance and execution levels in a

much quicker and more reliable structure.

1. The Original Communications Software

The software for this portion of the simulator is described in Barrow

(1988) and provides standard routines to support communications between different

computers connected via Ethernet and the Transmission Control Protocol/Intemet

Protocol (TCP/IP) systems (Comer, 1988).

The server portion of this package is written in C and runs on the IRIS

2400T workstation. The software supports full-duplex communications by sending

data through one port and receiving data through a second port. These ports are

linked to TCP/IP sockets and processes are spawned to service each socket. Data is

exchanged through an IRIS shared-memory segment of one Mbyte to communicate

between the IRIS execution level and the LISP-machine guidance level.

The client portion of the package is written in Common LISP and runs on

either the TI Explorer II or Symbolics LISP machines. These routines manipulate

an instantiation of the IP::TCP-HANDLER flavor of the system's TCP/IP software

(Symbolics User's Manual, 1987; TI Explorer II User's Manual, 1988): two-port

connections are established with a specific IRIS server to send and receive floating

point numbers, integers, and characters.

When either the client or the server transmit data. the infonnation is sent

via a series of Ethernet packets. each packet contains a single four-byte data

segment. Each Ethernet packet has a minimum 512-byte length so most of the

packet is unused. The conmunications code execution is comparable to the IRIS
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2400T display update rate so this inefficiency does not inhibit the simulation's

execution, but this scheme can be improved to send all data in a single Ethernet

packet.

2. The NPS AUV Communications Software

The original communications software required extensive modifications to

run on the newer IRIS 4D/70GT workstation. After considerable experimentation,

these modifications were judged to be beyond the scope of this thesis so another

approach was investigated. Thesis work by Shannon and Teter (1989) involved

similar communications code for a simulator application and the server portion of

that code has been adapted to support the NPS AUV simulator.

The client code on the LISP machines is largely unchanged, but two

additional algorithms have been added to read and write the different data format

that is exchanged with the newer IRIS workstation. The read function parses the

execution-level data package into its individual components and arranges these

components in a list for analysis by the guidance-level routines. The write function

places the guidance-level commands in a formatted message that is transmitted to

the IRIS machine.

The server code on the IRIS machine supports semi-duplex

communications-- two ports are still used on the LISP machines but all data is

transferred through a single port on the IRIS workstation. Data exchange between

the client and the server is always sequential so this does not affect the execution

or guidance levels. Since all data is transferred in a single formatted message, this

system makes more efficient use of the Ethernet packet size and the data exchange
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proceeds at a much faster rate. (The LISP code for the client side of this system is

shown in the Appendix.)

G. USER'S MANUAL

The NPS AUV simulator is menu-driven and prompts the user for input. This

manual assumes the user has a basic familiarity with the Symbolics and fI Explorer

II LISP machines as well as both IRIS graphics workstations. Some experience is

required with the KEE expert system shell and the UN. X operating system in order

to start up and secure the simulator, but not for its operation. Since this thesis

works with a variety of machines and implementations, different portions of code

will have to be loaded and executed depending on the combination of LISP machine

and IRIS workstation the user desires. This manual also repeats portions of the

MacPherson (1988) user's manual for continuity.

1. Graphics Workstation Operations

a. The Original AUV-- IRIS 2400T

The IRIS 2400T simulator can be operated in either the manual or

autopilot mode. To start the simulation, "log on" to the IRIS 2400"1 side terminal

and then transfer to the directory Iiorkinordmap,;ihcsis/svniholicsisubsiin or

41 orklnord,;awrhesisri-explorer,'subsim. Start the simulator in manual by entering

the command sub on the side terminal followed by a carnage return. After reading

the initial display on the main temunal, press any mouse button to begin. The

AUV simulator starts with the vehicle in manual control at a depth of zero fect,

speed zero knots, and course North
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All manual control of the AUV is effected with the main terminal

keyboard and its mouse buttons. To assist with this operating mode, a user's Help

display may be toggled over the chart display by pressing the I-key. This display

lists the various simulator controls that are explained below.

The AUV rudder is operated with the keyboard left-arrow and right-

arrow keys. The stemplanes control the vehicle's pitch angle; the D-key places

these planes on dive and the S-key places the stemplanes on rise. The bowplanes

are used to make small changes to the AUV's depth without a pitch angle; these

planes are manipuiated with the B-key for dive and the C-key for rise. AUV speed

is raised by the up-arrow key and lowered by the down-arrow key.

The ALV periscope has a number of features. The scope's

magnification power is shifted by using the H-key for high power and the L-key for

low power. The left rrnuse button rotates the periscope counterclockwise and the

right mouse button rotates the scope clockwise. The middle button will raise the

scope elevation angle while the simultaneous right and left mouse buttons will lower

the elevation angle. As the AUV is surfaced and submerged, the periscope will

automatically lower as the vehicle proceeds deeper than fifty feet; the periscope will

be raised when the vehicle ascends shallower than fifty feet.

The autopilot is started by pressing the A-key on the main keyboard.

The side terminal will indicate that the IRIS server is waiting to connect to either

expl (the TI Explorer II or sviml (the Symbolics LISP machine): a message will

also instruct the user to start the KEE portion of the simulator to connect the LISP

client with the IRIS server.
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The autopilot execution can be interrupted by pressing the Q key; this

will terminate the autopilot but the simulator will return to its manual mode. The

autopilot cannot be restarted (due to the system's shared memory constraints) but

the simulator may be stopped by pushing all three mouse buttons simultaneously.

Prior to restarting the LRIS-2400T simulator autopilot, ensure the previous socket

connection has been correctly broken. To do this, list the current processes with the

Unix command ps -ax and stop any /work/nordman... communications daemons with

the kill command. (Inexperienced users may require assistance for this step.)

b. The NPS AUV-- IRIS 4D/7OGT

The NPS AUV simulator may also be operated in the manual or

autopilot modes. To start the simulation, "log on" to the side terminal of the IRIS

4D/70GT and transfer to the director)' /usr/work/nordman/thesis/svmbolics/aul'sin or

/usr/worklnordrnantlhesis/ti-explorerlauvsim. Start the program in manual by

entering the command auv on the side terminal followed by a carriage return.

The simulated AUV starts on the surface at a speed of 25 rpm on

course East. All manual control in this simulator uses the mouse to manipulate

markers on the control panel at the right side of the main terminal display. To

alter the viewer's perspective or to change AUM parameters, move the mouse arrow

over the control panel marker for that parameter. press and hold the left mouse

button, and drag the marker to the desired new value of that parameter. (Changes

to the viewer's perspective should be executed slowly or the user may lose his own

perspective in the display.) At very low speeds, the ALU may slowly roll from
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port to starboard; raising speed will restore control surface effects on the

mathematical AUV hydrodynamic drag model and should damp out this motion.

The autopilot is started by pressing the A-key on the main keyboard.

The side terminal will indicate that the IRIS server is waiting to connect to either

expi (the TI Explorer II) or syml (the Symbolics LISP machine); a message will

also instruct the user to start the KEE portion of the simulator to connect the LISP

client with the IRIS server.

The autopilot execution can be interrupted by pressing the Q-key; the

autopilot cannot be restarted at this point but manual control of the AUV is

available. Prior to restarting the IRIS 4D/70GT simulator autopilot, ensure the

previous socket connection has been correctly broken. To do this, list the current

processes with the Unix command ps -al and stop any /usr/work/nordman...

send/receive communications daemons with the kill command. (Inexperienced users

may require assistance for this step.)

2. LISP Machine Operations

a. TI Explorer H

The TI Explorer II must be loaded with the KEE expert system

softwa-c shell. (It should be available by entering SYSTEM-K.) If the shell is not

loaded, a cold boot of the machine will be required; inexperienced users should get

helF at this point. When KEE is available, "log on" in the LISP Listener and then

press the SYSTEM-K combination to move to the KEE desktop. (See Figure 4.3.)
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Use the mouse to point at the KEE latchkey icon at the screen's upper left comer

and push the left mouse button.

A pop-up menu will appear offering KEE Commands; select the Load

KB command by pointing at the command with the mouse and pushing the left

mouse button. A KEE "typescript window" will appear requesting the name of the

knowledge base to be loaded; enter exp3.'nordman;auv.u followed by a carriage

return. KEE will load the AUV knowledge base and then will load the LISP code

files containing the guidance level functions. (The loading process will take about

ten seconds.) Once the files are loaded, use the mouse to point to the word AUV

in the knowledge base window and press the left mouse button. Another pop-up

menu will offer KB Commands; use the left mouse button to select the Display

option. The AUV Simulator Mission Tree will be drawn in a window labelled The

Graph of the AUV Knowledge Base.

Select an AU-V mission by using the mouse to point to the desired

generic mission at one of the leaves of the Mission Selection Tree. Press the left

mouse button to choose the mission, a pop-up menu of Unit Commands will appear.

Point at the Send Message option with the mouse and push the left mouse button

again: a pop-up menu of Message Types will appear. Point the mouse to the

message that starts the desired mission and press the left mouse button a final time.

The AUV simulator mission-level code will ask the user several

questions about mission parameters. These questions will appear in the KEE

typescript window and should be answered by entering answers to each of these

questions followed by a carriage return. When the KEE typescript window
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announces that it has connected with the appropriate IRIS workstation, move to that

workstation and press a carriage return on the side terminal. The IRIS side terminal

will notify the user that it has sent initial parameters to the LISP machine and the

mission-level code will begin a best-first search to determine the AUV's path.

When the KEE typescript window displays the message autopilot course on first leg

is:, press another carriage return on the IRIS side terminal to begin autonomous

simulator execution.

If necessary, the AUV simulator can be stopped by entering

CONTROL-ABORT. This will complicate the orderly shutdown of the TI Explorer

II communications sockets and should be avoided. Once the simulator has

completed its mission, return to the LISP Listener and enter the command (end-con)

to break the TI-IRIS socket connection. The simulation may be restarted by re-

entering the appropriate commands to start another mission from the KEE Mission

Tree.

b. Symbolics

On the Symbolics LISP machine, ensure the KEE expert system

shell software is loaded. (It is accessed by entering SELECT-K.) If the shell is

not loaded, a cold boot of the machine will be required; an inexperienced user

should get staff assistance at this point. Once KEE is available, "log on" in the

LISP Listener and then press the SELECT-K key combination to move to the KEE

desktop. (See Figure 4.3 on page 49.) Use the mouse to point at the KEE

latchkey icon at the screen's upper left comer and push the left mouse button. A

pop-up menu will appear offering KEE Commands; select the Load KB command

51



by pointing at the command with the mouse and pushing the left mouse button. A

KEE "typescript window" will appear requesting the name of the knowledge base to

be loaded; enter sym4:>nordman>auv.u followed by a carriage return. KEE will

load the AUV knowledge base and then will load the LISP code files containing the

guidance-level functions. (This process will take approximately thirty seconds.)

Once the files have completed loading, use the mouse to point to the word AUV in

the knowledge base window and press the left mouse button. Another pop-up menu

will offer KB Commands; use the left mouse button to select me Display option.

The AUV Simulator Mission Tree will be drawn in a window labelled The Graph of

the AUV Knowledge Base.

Prior to selecting a mission, an IRIS terminal must be chosen for the

simulation. Ensure that either the IRIS 2400T or the IRIS 4D/70GT has been

placed in its autopilot mode and is waiting to connect to the Symbolics LISP

machine (svml). On the Symbolics machine, return to the LISP Listener window

(SELECT-L, not the KEE LISP Listener) and select the appropriate IRIS

workstation by entering the commands (choose-iris 'iris2) (for the IRIS 2400T) or

(choose-iris 'iris5) (for the IRIS 4D/70GT). This will start the TCP/IP software on

the LISP machine and locate the correct IRIS port(s) for data exchange. The user

should then return to the KEE environment by entering SELECT-K.

Back in the KEE shell, select a mission by using the mouse to point

to the desired generic mission at one of the leaves of the Mission Selection Tree.

Press the left mouse button to choose the mission; a pop-up menu of Unit

Commands will appear. Point at the Send Message option with the mouse and push
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the left mouse button again; a pop-up menu of Message Types will appear. Point

the mouse to the message that starts the desired mission and press the left mouse

button a final time.

The AUV simulator mission-level code will ask the user several

questions about mission parameters. These questions will appear in the KEE

typescript window and should be answered in that window by first selecting the

window with the mouse and then entering answers to each of these questions

followed by a carriage return. When the KEE typescript window announces that it

has connected with the appropriate IRIS workstation, move to that workstation and

press a carriage return on the side terminal. The IRIS side terminal will notify the

user that it has sent initial parameters to the LISP machine and the mission-level

code on the LISP machine will begin a best-first search to determine the missionl's

path. When the KEE typescript window displays the message autopilot course on

the first leg is., press another carriage return on the IRIS side terminal to begin

autonomous simulator execution.

If necessary, the AUV simulator can be stopped by entering

CONTROL-ABORT. This will complicate the orderly shutdown of the Symbolics

communications sockets and should be avoided. Once the simulator has completed

its mission, return to the LISP Listener and enter the command (end-con) to break

the 1':mholics-TIS c-\t ..... The , ., be restarted by seuring

and restarting an IRiS simulator, re-entering the appropriate LISP machine command

to choose an IRIS workstation, and then starting another mission from the KEE

Mission Tree.



H. SUMMARY

This chapter describes the simulator's operation. The first section starts with

an overview of mission execution and then stresses the specific workings of the

software architecture hierarchy. Subsequent sections provide detailed discussions of

the mission, guidance, and execution levels of this hierarchy for two types of IRIS

graphics workstations. One section describes both types of communications software

used in this thesis, explains the reasons for their use, and discusses their differences.

The final section of this chapter contains the User's Manual to assist in operating

different combinations of the four machines.
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V. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter evaluates the experimental results of the AUV software

conversion and examines sample runs on the simulator's various combinations of

machines.

B. AUV SIMULATION FACILITIES

1. The Original Simulator

The original AUV graphics simulation (on the IRIS 2400T) now runs

under either the Symbolics or the TI Explorer H LISP machines. The TI Explorer

II is the faster machine (by roughly 50%) but manufacturer's updates to its

operating system have historically caused problems with the simulator's

communications code port requests. The Symbolics machine is a reliable backup to

the TI Explorer II.

2. The NPS AUV Simulator

The NPS ALUV simulator (on the IRIS 4D/70GT) now runs under

autopilot control from either the Symbolics or TI Explorer II LISP machines. The

guidance-level LISP code still performs as described in MacPherson (1988) but the

execution-level output is now displayed from an external perspective and in a more

realistic simulation.
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Several revisions to the execution-level code improve the simulator's

realism. The NPS AUV program was optimized to run on the faster IRIS 4D/GT70

workstation and its algorithms take advantage of the machine's processing capability

and greater speed. This is clearly demonstrated in the simulation's graphics, where

lighting and shading models give the AUV and its environment a depth perspective

that is not evident in the "flat" graphics display of the IRIS 2400T. While the

earlier simulator rotates the environmental scene about the viewer, this simulator

allows the viewer to "move about" the display and to examine it from a nearly

unlimited variety of angles, distances, and elevations. Although this type of display

requires much more computer processing. the IRIS 4D/70GT manipulates its

perspectives faster than the IRIS 2400T can run its simpler simulation.

The user interface for the NPS AUV simulator is easier to understand and

simpler to operate. The IRIS 2400T program accepts input through twenty different

keys and mouse buttons (and uses a help menu to assist the user), but the IRIS

4D/GT70 display is completely mouse-driven with one button. While the older

vehicle requires continuous user input to reach its desired parameters, the newer

simulation immediately accepts and displays the user's commands and then applies

them to the hydrodynamic equations. The user is free to examne the vehicle's

response without having to provide additional input.

The NPS ALV program allows the user a greater flexibility in starting and

observing a mission: it also permits more missions to be run in the same amount of

time. While the older simulation starts each mission from the same location, the

NPS AITV simulator allows the user to start from any depth or position in the test
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pool. Instead of observing the older AUV missions on a two-dimensional plot, the

newer simulator allows the user to choose an initial viewing position before

beginning the mission. This useful feature permits observation from a number of

perspectives to examine control surfaces, thruster operation, or restricted

maneuvering. The user is able to conveniently and quickly examine the AUV's

simulated operation in exactly the same way as the actual vehicle will be observed.

This not only exceeds the capabilities of the older simulator but also can produce

reduced testing requirements for the actual NPS AUV.

The NPS AUV simulator autopilot uses the same methods as the older

simulator to initialize its missions. After selecting the viewer perspective and the

vehicle's initial position, the user inputs the same mission parameters as required by

the original simulation. Although the NPS AUV is operating in a smaller

environment, the vehicle still has a significant number of obstacles to avoid when

conducting path-planning. The best-first path-planning algorithun operates

satisfactorily (and identically) in either environment to guide the vehicles around

obstacles and reach a goal. Its test-pool transit is shorter, but the NPS AUV can

encounter more obstacles than the older vehicle, so the path-planner generates more

complicated routes with a number of abrupt maneuvers to reach the vehicle's goal.

Once the mission's execution is started. the vehicle maneuvers to reach its goal

while the viewer watches from a chosen perspective. The side tenninals of both

graphics workstations also display infornation on vehicle parameters and

environmental conditionV.



The NPS AUV simulator has been explicitly designed to test a variety of

AUV models in a selection of environments. Significant software design effort was

devoted to implementing a modular code structure that will allow the rapid addition

of new features. Proficient programmers can alter the location of obstacles, add

moving contacts, change the AUV's maneuvering characteristics, and test different

types of controllers all by adding or replacing modules of simulator code.

The NPS AUV simulator presently runs much simpler missions than the earlier

simulation. Although the test pool is filled with obstacles, there are no

maneuvering contacts for the NPS AUV to track and avoid. The transit and

reconnaissance missions are subsets of the original program's more complicated

open-ocean missions, but these missions are being expanded to incorporate contact

avoidance, dynamic path-replanning, switching between hovering and propulsion, and

using sonar for environmental mapping. As different system designs and algorithms

are developed for successive NPS AUV models, their performance can examined by

adding those features into the test pool missions.

3. Communication Between IRIS and LISP Machines

The inter-computer communications code developed by Barrow (1988) is

designed to run under the AT&T Unix System V implementation and was orighially

developed for the IRIS 2400T and IRIS 4D workstations. (The IRIS 4D is an

earlier version of the IRIS 4D/70GT.) After several lengthy and unsuccessful

attempts to port the Barrow code to the IRIS 4D/70GT, the Shannon and Teter

(1989) communications code was substituted for the Barrow client/server svstem.
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Nearly all of the Unix System V routines on the IRIS 4D/70GT appear

to be compatible with earlier implementations; most of the code conversion only

required updating library subroutine definitions. However, the IRIX operating

system (IRIS 4D User's Guide, 1988) handles shared-memory operations in a

different manner than the earlier IRIS 4D systems and it is unclear whether the

Barrow shared-memory toutines can be adapted to the IRIS 4D/70GT. Time

constraints halted work on this code conversion; the Shannon and Teter routines

were substituted.

A second (and more serious) set of problems arose after the operating

system on the TI Explorer Ii was updated. The client communications code on

either LISP machine obtains a socket port number before connecting with an IRIS

workstation, but the newer version (4.1) of the Explorer I's operating system does

not execute that port-number request-- the code would not even compile or load. A

lengthy and complicated debugging procedure was unable to isolate and correct the

problem. and the code was even re-written to use diff- 2nt communications

protocols. Due to time constraints, this problem was finally avoided by porting the

TI Explorer IH communications code to the Symbo!ics LISP machine. Copies of the

code and its error messages were sent to Texas Instruments for technical assistance,

where it was determined the failure was due to an operating system deficiency (TI,

1989. An updated Explorer II operating system (version 4.2) has been obtained

and the communications code will be adapted to this new inplementation.
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C. NPS AUV SIMULATOR OPERATION

The guidance-level routines developed by MacPherson (1988) are used to build

the missions executed by the NPS AUV. These modular routines allow the user to

design more complex AUV missions by simply adding specific tasks to the mission-

level code. An evolving example of this is the NPS AUV reconnaissance mission.

The first version of the reconnaissance mission only required the AUV to

perform a surface transit between two points. After satisfactory performance was

demonstrated, this was modified to require a submerged transit along a specified

path with the vehicle returning to its starting point upon completion. The current

reconnaissance mission requires the AUV to perform a submerged transit to its goal,

surface to simulate a photographic and electronic sweep of the environment,

submerge to return to its starting point, and surface for pickup.

The NPS ALUV simulator shows that the vehicle can accomplish a simple test-

pool reconnaissance mission with the same performance as the original vehicle in its

opeii-ocean reconnaissance, and the simulator's missions can easily be modified to

execute moire complex requirements.

1). StI M ARY

This chapter presents a surnma he NPS ALUV simulator and its facilities.

The capabilities of the two LISP machines are contrasted, the simulator's

comilluilications code is discussed, and the performance of the ALV mission-control

routi tn ir evaluated when the simulation uses the more powerful IRIS 4D/70GT

grNI llk. - orkstation



VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

The NPS AUV simulator is an important tool for incorporating new

autonomous control concepts and algorithms into the latest version of the NPS

AUV. The KEE expert systen, shell provides an inexperienced user with an

intuitive menu-driven system that allows rapid mission planning and execution. The

shell also provides a powerful environment where programmers can modify the

simulator's mission-level code and develop additional missions. The faster and more

powerful IRIS 4D/70GT graphics workstation effectively simulates the AUV's actual

operation with a real-time display of the vehicle's actions, and this workstation has

the capacity to accommodate more complex AUV models or controllers. The

vehicle simulations have been improved and modified to run on two different LISP

machines or graphics workstations.

The simulator is a valuable test and debugging environment that will save

countless hours of experimentation: it will also verify code reliability before the

software is installed in the actual NPS ALV computer systen; The new NPS ALV

simulator provides the user with a wide choice of starting locations and viewing

positions to thoroughly examine vehicle performance from many different

perspectives, ThiV viewing flexibility greatly reduces the risks, simplifies the

logisti'S, and ninilnizes the costs of testing the NPS AUV in it ocean environment.

11



Although it was not intended to be a goal of the simulator research, a better

communications system is available (Shannon and Teter, 1989) and has been

adapted to this simulator. The system is faster and more efficient but it is invoked

at a lower level of abstraction; it will be more difficult to modify when the

simulator is updated to pass additional sensor data to the guidance level of control.

While this simulator was developed as a research project, it is designed to be used

as a tool. This means that a simple, easily-modified communications system is

potentially more useful than a faster system with a more complex interface. The

communications support of distributed simulation systems is vitally important for the

rapid design and modification of these simulators; a more thorough discussion of

this issue is presented in Barrow (1988).

B. RESEARCH EXTENSIONS

Several research extensions are discussed in MacPherson (1988) and should

still be applied to this simulator. This includes a faster and more sophisticated

path-planning algorithm, an AUV vision system for mapping and for contact

classification, algorithms for inertial or terrain-following navigation systems. and an

environment for examining the performance of high-resolution sonar systems.

This simulator must evolve along with the NPS AUV. The NPS AUV design

team is developing more sophisticated AUV models and controllers as well as the

hydrodynamic data to describe the performance of these vehicles. The simulator

must incorporate the results of that research to present an accurate display of the

latest A TV's hvdrodvnamic and maneuvering characteristics. A highly realistic

simulation will produce valuable and timely feedback by quickly demonstrating the

(,2



potential problems or side effects generated by the design team's efforts. Specific

examples of these modifications are the hydrodynamic data from the NPS Model 2

AUV, a "sliding-mode controller" for the NPS AUV's maneuvering system, and

guidance-level software to control the vehicle's transition between propulsion and

hovering modes.

An effective AUV must possess adaptability and the ability to replan its

mission as a result of unexpected events. All missions in this simulator are still

relatively simple and complex missions will require a more complex planner. For

example, if the vehicle detects an obstacle or an "interesting" contact while

executing an unrelated mission, it may have to interrupt its primary mission, switch

to its hovering control mode, and investigate that object. The code required to

implement the "interrupt" and "hover" decisions will require a rule-based expert

system; this system can be constructed by supplementing the LISP routines with

Prolog rules or with the rule-based features of an expert systems shell.

This simulator's modular design allows additional vehicle features to be

quickly incorporated into the graphics display. This will provide a realistic

demonstration of the performance of new AUV models and controllers and it will

allow several different models to be compared in a laboratory environment. As the

sophistication and variety of these models increases, the simulator's organization

must also be updated to maintain a simple and user-friendly interface. This can be

done by using meni,-driven options to allow the user to select vehicle models and

control characteristics before starting the simulation.
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APPENDIX

This appendix lists the client-side LISP communications code of the NPS AUV.

; Mode: LISP; Syntax: Common-lisp; Package: USER -

;;; This is the program SYM-IRIS-COMM.LISP. It provides the necessary
;;; software on the Symbolics LISP machine to communicate with the IRIS
;;; 2400T or the IRIS 4D/70GT. It is loaded in the KEE shell with the
;;; knowledge base AUV.U.

"Talk" is an object to send and to receive data across a network.

usage • (send talk :init-destination-host 'iris2) get remote host object
(send talk :start-iris) make connection

; (send talk :put-iris data) ; send data
(send talk :get-iris) ; get data from remote host
(send talk :stop-iris) ; close communication
(send talk :reuse-iris) ; open closed communication

* (send talk :change-iris-ports) ; switch from IRIS2 full-duplex
comims to IRIS5 semi-duplex

(defvar talk)

library functions to be used by flavor conversation-with-iris.

(defmacro loopfor (var init test expl
'(prog ()

(setq ,var .inil
tag

.expl
(setq N ar ( 1+ ,var))
(if = var ,test) (retun t) (go tag))))
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(defui convert-number-to-string (n)
(princ-to-string n))

(defun convert-string-to-integer (str &optional (radix 10))
(do ((j 0 (+ j 1))

(n 0 (+ (* n radix) (digit-char-p (char str j) radix))))
((= j (length str)) n)))

(defun f'md-period-index (str)
(catch 'exit

(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))

(throw 'exit x)))))

(defun get-leftside-of-real (str &optional (radix 10))
(do ((j 0 (1+ j))

(n 0 (+ (* n radix) (digit-char-p (char str j) radix))))
((or (null (digit-char-p (char str j) radix)) (= j (length str))) n)))

(defun get-rightside-of-real (str &optional (radix 10))
(do ((index (1+ (find-period-index str)) (1+ index))

(factor 0.10 (* factor 0.10))
(1 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))

((= index (length str)) n )))

(defun convert-string-to-real (str &optional (radix 10))
(+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str radix)))

Port number definitions: IRIS2 uses full duplex comms so ports are set up for
this default. IRIS5 uses semiduplex comms (the same port for send and
receive) and will have both ports set to *remote-portl*.

(defvar *remote-portl* 1027) this is the remote send port
(defvar *remote-port2 * 1026) this is the remote receive port
(defvar *local-talk-port* 1500) this is the local send port
(defvar *local-listen-port* 1501) this is the local receive port

Conversation-with-iris flavor definition.

('5



This definition is not restricted to IRIS, but it can be
used with any host as long as the remote host does not
already use ports 1027 or 1026 for its own purposes.

(defflavor conversation-with-iris ((talking-port-number *remote-port 1*)
(listening-port-number *remote-port2*)

(local-talk-port-number *local-talk-port*)
(local-listen-port-number *local -listen-port*)

(talking-stream)
(listening-stream)

(destination-host-object)
)

()

:initable-instance-variables)

(defmethod (:init-destination-host conversation-with-iris)
(name-of-host)

(setf destination-host-object (net:parse-host name-of-host)))

(definethod (:change-iris-ports conversation-w ith-iris)
()

(setf talking-port-number *remote-port I*)
(setf listening -port-number *remote-pol *))

(deflnethod (:start-ris conversation-with-ris)

(setf talking-stream
(tcp:open-tcp-stream destination-host-object

talking-poit-number
local -talk-port-number))

(setf listening-stream
(tcp:open-tcp-stream destination-host-object

listening-port-number
local-listen-port-number))

(terpri ,
(prm: "A conversation with the IRIS machine has been established.")
(terpri

(defmethod (:reuse-iris conversation-with-iris)
(I

(send self :start-iris)
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(defun read-string (stream num-chars)
(let ((out-string ""))

(dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))))

out-string))

(definethod (:get-iris conversation-with-iris)
0)

(OeW ((typebuffer )

(lengthbuffer
(buffer "

(buffer-length 1))
(progn

(setf typebuffer
(read-string listening-streamr 1))

(setf lengthbuffer
(read-string listening-streami 4))

(setf buffer-length
(convert -string -to-intege r lengthbuffer))

(setf buffer
(read-string l istening -stream buffer-length))

(cond ((equal typebuffer '1") (convert-string-to- integer buffer))
((equal typebuffer "R") (convert -string -to-re a] buffer))
((equal typebuffer "C') buffer)
(t nil)))))

(defvar *step.\.ar* 0)

(defun mv -write -string(string streamn)
(OeW ((numn-chars (length string))

(doti-nes (I nuin-chars)
(write-char (aref string i) streatw))n

(defmnethod (:put-iris, conversation-with-iris
(Ooect

(17



(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object))

((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'single-float) (convert-number-to-string object))
((equal (type-of object) 'string) object)
(t "error")))

(buffer-length (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) 'single-float) "R")
((equal (type-of object) 'string) "C")
(t "C")))

(lengthbuffer (convert-number-to-string buffer-length)))

(progn
(my-write-string typebuffer talking-stream)
(send talking-stream :force-output)

(if (= (length lengthbuffer) 4)
(write-string lengthbuffer talking-stream)
(progn

(loopfor *step-vat* (length lengthbuffer) 4
(write-string "0" talking-streaii))

(mv-write-string lengthbuffer talking-stream)

(send talking-stream :force-output)

(mv-write-string buffer talking-strean
(send talking-stream :force-output

(definethod (:check-iris conversation-with-iris) (size-io)
(let* ((typebuffer

(progn
(setf tTebuffer

(read-string listening-stream size-io)))
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(defimethod (:stop-iris conversation-with-iris)
0

(progn (send listening-stream :close)
(send talking-stream :close))

(terpri)
(princ "A conversation with the IRIS machine has been closed.")
(terpri))

(setf talk (make-instance 'conversation-with-iris))

(defun choose-iris (host-name)
(cond

((equal host-name 'iris2)
(send talk :init-destination-host host-name) ;use iris2 as default output.
(terpri)
(princ "IRIS2 selected.")
(terpri))

((equal host-name 'iris5)
(send talk :change- iis-ports) ;select semi-duplex comm ports.
(send talk :init-destination-host host-name)
(terpri)
(princ "IRIS5 selected.")
(terpri))))

(defun start-cono
(-end talk :start-iris))

(defun get-data(
(send talk :get-iris))

(defun send float(single-float)
(send talk :put-iris single-float))

(defun send_string(string)
(send talk :put-iris string))

(defun end-con(
(send talk :stop-ris))

(defun restart(i
(send talk :reuse-iris0)
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